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Ordering of hard needles at a hard wall
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We study a system of hard spherocylinders in contact with a hard wall, assuming that the length-to-
width ratio of the spherocylinder tends to infinity. The Onsager approximation is applied to calculate
the free energy of the system. The integral equation for the one-particle distribution function is solved in
the uniaxial case, i.e., for bulk densities corresponding to the isotropic phase. We find the density and
order parameter profiles and conclude that the particles prefer parallel alignment close to the wall. Fi-
nally, we study the stability of the uniaxial solution and find the bifurcation point corresponding to the

nematic order close to the wall.

PACS number(s): 61.30.Gd, 64.70.Md

I. INTRODUCTION

The problem of ordering of anisotropic liquid-crystal
molecules at various surfaces attracts much experimental
and theoretical interest [1,2]. The microscopic mecha-
nism of ordering (or disordering) effects of the surface or
interface on liquid crystals is quite complicated and still
not very well understood although some progress has
been made during recent years. For example, some solid
substrates induce homeotropic, i.e., normal to the sur-
face, nematic alignment whereas others favor alignment
parallel to the surface of the substrate. Special prepara-
tion of the surface can even produce a tilt of the nematic
director.

To understand qualitatively the behavior of liquid crys-
tals in contact with a solid substrate or at an interface,
one can apply the Landau-de Gennes theory [3-6].
However, in this case the orientational order parameter is
a tensor and the number of phenomenological parameters
of the theory becomes quite large when the surface in-
teraction is added to the usual Landau—de Gennes Ham-
iltonian. This makes the analysis of all possible cases
very difficult. The number of parameters can be reduced
if a molecular theory is used. Moreover, the Landau—de
Gennes theory seems unable to explain some experimen-
tal observations such as the tilt of the director at the
nematic-isotropic interface [7] or the smectic- 4 order in-
duced by a free surface of the isotropic phase of some
compounds [8]. To study these phenomena, density-
functional theories [9—-11] or laitice models [12] are more
appropriate.

As the real interaction between liquid-crystal mole-
cules and a solid substrate can be quite complicated, in
this paper we study a highly idealized situation of hard
needles in contact with a hard wall. In 1949 Onsager [12]
demonstrated that hard spherocylinders can undergo the
nematic-isotropic transition when the length-to-width ra-
tio L /D becomes very large. He also argued that the ex-
cess free energy of the system is then given by the
second-order term of the virial expansion and all higher-
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order terms can be neglected. Strictly speaking the On-
sager theory is valid in the limit L /D — o, i.e., the hard
needle limit, but it is often applied also for finite values of
L /D. Extension of the Onsager theory to nonuniform
fluids is straightforward and it has been used to study the
nematic-isotropic  interface [9,10]. Despite some
discrepancies between different approaches to the prob-
lem it seems that the Onsager theory is capable of ex-
plaining the tilt of the director at the nematic-isotropic
interface, at least in some range of L /D ratios. The same
model has also been applied to study, in an approximate
way, the nematic alignment at a solid substrate [14].

In this paper we undertake more detailed studies of the
alignment of hard needles close to the wall when the iso-
tropic phase is assumed in the bulk. In particular, we
study the possibility of a surface transition in which the
rotational symmetry in the plane of the wall is broken.
Such a transition is likely to occur if the wall favors the
parallel alignment of hard needles and their concentra-
tion approaches the critical value at which the bulk
isotropic-to-nematic transition takes place.

The plan of the paper is as follows. In Sec. II we recall
the Onsager theory for nonuniform systems and obtain
an integral equation for the one-particle distribution
function in the limit L /D — . The results of numerical
solutions of that equation in the case of uniaxial symme-
try and the comparison with the pressure sum rule are
presented in Sec. III. In Sec. IV we study the stability of
the uniaxial solution in order to locate the surface transi-
tion to the biaxial phase, and Sec. V is devoted to the dis-
cussion.

II. THEORY

We consider a system of hard spherocylinders of length
L and diamecter D in contact with a hard and structure-
less wall. The grand canonical potential of the system, (2,
can be expressed as a functional of the one-particle distri-
bution function p(z,w) [15], where z = 0 measures the dis-
tance of the particle center of mass from the wall and
w=(19,¢) denotes its orientation. In the Onsager approx-
imation, () is given by
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BO/A= fo“’dz dop(z,0)[InAp(z,0)—1]

_B”fowdz da)p(z,a))'
+%f0wd21d0)1f0 dZZdCl)zV(le,wl’wz)
Xp(z,w)p(z,,0,) , 2.1

where V(zy,,0,0,)=— fdrbfz(rlz,wl,wz), B is the
Boltzmann factor, A4 is the area of the wall, A is the
thermal de Broglie wavelength, and f, denotes the Mayer
function for hard spherocylinders. Because of the pres-
ence of the wall p(z,0) must vanish if
z <zp(@)=1(L|cos?#|+D). We assume that at
z =+ o the system is isotropic and its density is equal to
Py, ie, p(+ow,0)=p,/4m. The excluded volume
for hard spherocylinders is given by V(dy,)
=2L2D sind;,+27LD>+47D? and when the ratio L /D
is large only the first term is important and the remaining
two terms can be neglected. Using this approximation
for ¥, one finds the following relation between p and p,:

Bu=In(A%p, /47r)+—’21L2Dp,, . 2.2)

1 A~
V(zyy,0,0,)=31L2D sim?lzf ldrlflldrzflldrﬁ z—+rLd,;k—1r,L@d, k—riD

In the rest of the paper we assume that L is the unit of
length. Then the limit L /D — oo is equivalent to D —0.
If we take this limit in (2.5) the integration over r; can be
performed and (2.3) can be rewritten in terms of dimen-
sionless quantities as follows:

A )
Inn(z,,w,)+ o fo dz,dw,V (z1,,0,,0,)
(2.6

Xn(ZZ,wz)_%A,:O ,

where A=L?Dp, and n(z,0)=4mp(z,»)/p,. The kernel
of the integral is given now by

V(le,a)l,w?’):%Sin’l?lz
1 1
X d dry8(z,—4
fﬂ ’1_[_1 ra8(zyy —3riuy
—iruy), 2.7

]
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Minimization of  with respect to p(z,w) together with
Eq. (2.2) leads to the following integral equation:

In[47p(z,01)/py 1+ fowdzzda)zV(zlz,wl,a)z)

Xp(zz,a)z)—-;iLszb=O. (2.3)
Our aim is to solve this equation in the case of extremely
elongated spherocylinders. Therefore we use in (2.3)
V(z,,,0,,®,) obtained in the limit L /D — . To per-
form this limit, we note first that V(z;,0,w,) can be

conveniently expressed as follows:

V(ziopo)=— [drdzp—k0fynopoy), 2.4

where k is a unit vector normal to the wall and 8(x)
denotes the Dirac 6 function. Up to the leading order in
L /D, the integration is performed over the parallelepiped
defined as a set of points r=1rLd,+1r,L&,
+r3D[ », X @,) /sind, ], for which |r [<1,i=1,2,3 and
& ;= (sind; cos¢1,sm19 sm¢j,cosﬂ ), j=1,2. The change

J J
of the integration variables in (2.4) glves

~ (ﬁIXé\)z)-ﬁ
— (2.5)
sind;,

where u, =&, k=cosd,, i=1,2. Note that the integral in
(2.7) does not depend on the signs of u; and u,. The di-
mensionless parameter A is the suitable measure of con-
centration of very thin hard rods in the Onsager theory.
This theory predicts that the nematic-isotropic transition
occurs when A=A;=4.19 and its value jumps to
A=Ay =5.34 in the nematic phase; the nematic order pa-
rameter at the transition is Q =0.79.

It is convenient to introduce a new variable,
&=z —L|ul, which measures the distance from the wall
of the end of the particle closer to the wall. We also
define the distribution of the ends as n,({,0)
=n({+1lul,0). The advantage of such a choice of vari-
ables is that £ changes from O to <« independently of
despite the presence of the hard wall. Using the new
variables we transform (2.7) into

L] 1 ’ 1 ’ ’ ’
V(E1p0p,0,)=2 s1n1?12f0 dr fo dry8(&y+ryluy| =& —riluy])

231111912 f§|+|“1‘

|u1u2|

&+l |
f2 2,86, — 1))

’ (2.8)
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& ri=1+r)/2, ry=(1—r,)/2, and
1,2. Combining (2.6) and (2.8) we find

Where §12 §2
;= +rlul, i=

that
(£ 00)+ 2= [ doy2 sind ,——
elsl 47 lu,|
§1+|“1| T, _
><f§l dt N (,0,)— —-A=0,
(2.9)
where
Tzlit_fot”e(g"")dg if £ < lul
Noo)=] | (2.10)
WIH ne(g,0)dg if £ > |ul .

In this section we restrict our considerations to the distri-
bution functions of uniaxial symmetry with respect to the
z axis. This means that the distribution of the ends de-
pends only on § and u; in addition n (§,u)=n,(§, —u)
To perform integration over the angles in (2.9), we ex-
pand sind,, in a series of the Legendre polynomials, P,
as follows:

]

Sin‘l912= 2 SIPI(COS’l?lz) s (2.11)
1=0
where 5, =0 if [ is odd. Substituting (2.11) into (2.9) and

applying the addition theorem we obtain

Inn,(§,u)+21 s,P,(u)L
=0 |ul
&+ lul T
X ——A=0 2.12
fg di Ny(1) == , (212
where the functions N,(t), for 1 =0,2,4, ... are defined
as follows:
1
N,(t)——;fP,(u)N(t,u)dw
f dgf -—P, wing(&u) if 1 <1
(2.13)
f gf —P, Mo (Gu) if t>1.

Taking the exponent of both sides of Eq. (2.12) we can
determine self-consistently N,(¢) from (2.12) and (2.13).
Because n,(+o,u)=1 we find from (2.13) that
N;(+ «©)=8;,. In the opposite limit of t-—0, N,(z)—0
for all I. It is interesting to study the asymptotic
behavior of N,(z) for t —0 as we expect some nonanalyti-
city in this regime. Differentiating N,(¢) we find that
N/(t) ~—n,(0%,0)P,(0)Int, hence

Ni(1) ~0ne(0+,0)P,(O)t(1—lnt) . (2.14)
t—

From Egs. (2.14) and (2.12) we recover the asymptotic ex-
pression for n,(§,u) when both £ and u are small, i.e.,

lnne(é,u) ~

u—»

T a— -—n (0%,0)
o

X | =L [(&+ ulPn(E+ |u))
2[ul |
—&’Ing]
—%(|u|+2§)] , (2.15a)
which gives
- A o+
Inn,(§,u =0) ~ ZA+""n,(0%,06(ng—1), (2.15b)

—) 2
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Inn, (£=0",u) ~ —k+———n 0%,0)[ul(Lnlu|—2),

u—0
(2.15¢)

where lnne(0+,0)=ﬂ'/2}». The last relation can be also
expressed as InA’p(0™,0)=pu, which is the relation be-
tween the chemical potential and density for the ideal
gas. It results from asymptotic relations (2.15) that the
point {=u =0 corresponds to a maximum of n,({,u) and
the derivative of n, in any direction is equal to — oo at
this point. This singular behavior of the derivative of n,
results from the limit D —0 and it concerns only one
point {=u =0. From Egs. (2.15) we can also conclude
that the particles close to the wall favor parallel align-
ment.

III. RESULTS

To solve Eq. (2.12), we have to determine N,(¢) in a
self-consistent manner from (2.12) and (2.13). It is con-
venient to redefine N,(¢) by substituting into (2.13)
n,(&,u)—38,, instead of n,(§,u). This is in order to have
the same boundary conditions: N;(0)=N,(+ o )=0 for
all . Then we assume that N,(¢) can be truncated at
some f..., i.e., N;(t)=0 if t >¢_,.: in our calculations
tmax =2 (in units of L). It is rather important to take into
account the asymptotic behavior of N,(z) for t —0. To
do this, we assume that N;(z)=(1—Inz)f,(¢), where the
functions f;(z) satisfy the following conditions: f;(#)~¢
for t—0 and f)(¢,,,)=0. Then we expand f,(¢) in a

series of suitable orthogonal functions 1, (¢),
k =0,1,2, ... defined for 0=t <¢_,,. We choose
b ()= | (2K ESK! V2 (2t o)
K= Tan k - |> .
max(k +4)' 2 max

where P2 ,(x) is an associated Legendre polynomial. It
results from the definition that ¥, (¢,,,)=0, ¥, (¢t)~¢ for
t—0, and

tmax
S O )dt =8

Then the expansion f;(£)=3;>qf s (t) is substituted
into Egs. (2.12) and (2.13) from which the coefficients f7;
can be determined self-consistently. We note that all
N,(t) are approximated by smooth functions, which is not
compatible with definition (2.13). However, it is easy to
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TABLE 1. Comparison of the pressure sum rule
f:)ne(0+,u)du =1+mA/4 [see Egs. (3.2) and (3.3)] with the re-
sults of numerical calculations. Note that for A > 3.55 the uni-
axial solution is unstable.

A 1+7A/4 foln,_,(OJr,u)du
1.0 1.785 1.786
2.0 2.571 2.586
3.0 3.356 3.470
3.5 3.749 4.079
4.0 4.142 4.789
4.1 4.220 5.101
4.15 4.259 5.270

check that the functions N,(¢) and their first derivatives
are continuous at ¢t =1, and a discontinuity may occur
only in higher derivatives. Therefore we do not expect
any serious consequences of our approximation, especial-
ly that all N,(¢) are rather small in the region 1 <¢=<¢_,..
We have solved Eq. (2.12) for A=1, 2, 3, 3.5, 4, 4.1,
and 4.15 using the coefficients fj, as independent vari-
ables, for 0=</=</_ . and 0=k =<k, , where [/, =10
and k_,, up to 30 have been used. The solutions have
been found with the aid of a minimizing procedure. We
can compare our results with the exact pressure sum rule
which the equilibrium one-particle distribution function
should satisfy [16], i.e.,

fp(z;:in(a)),a))da)=ﬁp ,

where p denotes the bulk pressure. Application of (3.2) to
our system gives

(3.2)

T

[ 'n0%,uidu =1+ T . (3.3)
0 4

1.0

0.8

0.4

0.2

0.0 I+ T T
0.0 0.5 1.0 1.5 2.0

-
FIG. 1. Normalized density of the mass centers vs the dis-

tance from the wall (in units of L), for A=1 (crosses), A=2 (as-
terisks), A=3 (triangles), and A =4 (squares).
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FIG. 2. Q,,=(P,) component of the order parameter tensor
vs the distance from the wall. P, is averaged with the one-
particle distribution function for the centers of mass. Meaning
of symbols and units the same as in Fig. 1.

The comparison of the exact relation (3.3) with the re-
sults of numerical calculations is presented in Table I.
We note that for A <2 the agreement is almost perfect
whereas for higher values of A it worsens gradually even
though a quite large number of variables have been used
to approximate the solution. We discuss this fact in the
last section.

In Fig. 1 we plot the density n (z)= fn (z,u)d w /4 for
a few values of A. If 0<z <1 then n(z)= gzn(z,u)du

and n(z)~2zn(0%,0) when z—0. The first derivative of

5.0

4.0

3.0

2.0

..hw‘

N

RS EEEN s gyl b bt aagd
res S

0.0 Frrrrr T T

0.5 1.0 1.5 2.0

¢

FIG. 3. Normalized density of the ends of the particles vs the
distance from the wall. Meaning of symbols and units the same
asin Fig. 1.
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n(z) must be discontinuous at z=1 because 0.0C 5 K
n(z)=f(1,n(z,u)du for z > 1. We note that the kink at ] K
z=1 coincides with the maximum of n(z). The max- 1 K
imum is only about 10% above the bulk value which is —0.05 + K
reached at z=1. The order parameter in our problem is . !
Q,.(2)= [(dw/4m)n (z,u)P,(u)/n(z) and it is plotted in ]
Fig. 2. It results from the definition that Q,,(07)=—1. ~0.10 4 1

We note that for small values of A a very good approxi- B E K
mation for Q,,(z) is obtained when n (z,u) is approximat- l22 ] //'

ed by the Heaviside step function, i.e., n(zu) —0.15 B /

~©(z —1|ul). This approximation gives Q,,=2z>—1, 1

for z <1 and Q,, =0, otherwise. When A increases the b

tail of Q,,(z) becomes more apparent and more slowly de- 000

caying than in the case of n (z).

Replacing n(z,u) by n,({,u) we define n,(f) and
Q75 (&). The sum rule can be rewritten in the form resem-
bling the case of spherical particles at a hard wall, i.e.,
p.(0")=An,(0")=PBp. The concentration of the ends
n,(&) decreases and the order parameter Q. ({) increases
monotonically with £ without any kinks (see Figs. 3 and
4). We can conclude that in the context of anisotropic
particles in contact with a hard wall the variables ({,u)
are more convenient than (z,u). This is because in the
former case the orientational and positional variables are
always independent of each other whereas in the latter
case they are coupled close to the wall.

Apart from the profile of the order parameter we also
define the average surface order parameter:

1 ©
r”:Z;fo dz don(z,u)Py(u)

_ 1 e
= dtdon, G uPy )~ . (3.4)

0.0

cinreaiiiviiasd

-0.1

o

|
o
[oN]

L1y

LLLg

Joiiiaanl

=05 T T I T YT T Y
0.0 SE 1.0 1.5 2.0

FIG. 4. Q2 ={(P,) component of the order parameter tensor
vs the distance from the wall. P, is averaged with the one-
particle distribution function for the ends of the particles.
Meaning of symbols and units the same as in Fig. 1.

4

-4
BRI B e S B R e s
0.0 1.0 2.0 3.0 4.0 5.0 6.0

A

FIG. 5. Average surface order parameter vs the bulk density
A (solid line). The dashed line is defined by Eq. (4.5) (see text).
The intersection of the two lines gives a rough estimate of the
stability limit for the uniaxial solution.

It is a useful quantity to study the surface phase transi-
tion, which is shown in the next section. The plot of T',,
against A is presented in Fig. S.

IV. STABILITY ANALYSIS

The order parameter in our problem is a traceless ten-
sor which in its diagonal form is given by

—1l0+P 0 0
(Q,))=1Bw,0;—8;)= 0 —-lg0-P 0
0 0 Q

4.1

In a system of uniaxial symmetry, Q,, =Q+0 and P =0.
Positive Q means that particles are on average aligned
along the z axis whereas Q <0 corresponds to the situa-
tion when the orientations of particles are close to the xy
plane. In the latter case, if the system is in the nematic
phase there is some orientational order in the xy plane,
i.e., the system is biaxial (P#0). A negative Q can be
achieved due to a bulk external field, which affects the
nematic-isotropic transition [17], or a limiting surface. In
the latter case, it has been shown in the framework of a
Landau-de Gennes theory [5] that if the wall favors
parallel alignment at the surface then a surface phase
transition to a biaxial phase preceding the bulk
isotropic-to-nematic transition can be expected.

We have already shown that the wall favors parallel
alignment of hard needles. To locate the surface phase
transition, we apply the stability analysis to the uniaxial
solution of Eq. (2.12). In other words, we see the bifurca-
tion point at which a biaxial solution branches off from
the uniaxial solution.

It is helpful to consider first a simpler problem of a
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bulk system of hard needles in an external field along the
z axis. We assume that the system is in the paranematic
phase, i.e., Q70 but small, and that the field induces neg-
ative Q. We can ask about the stability of the system
with respect to the nematic perturbations in the xy plane.
To find the critical value of A at which the loss of stability
occurs, we linearize the integral equation for the distribu-
tion function around the equilibrium distribution
S (u =cos?) as follows:

8p(@)+2Af (uy) [ (sind,)8p(w,)dw, =0 4.2)
where
[ rado=1.

Applying (2.11) and the addition theorem we transform
(4.2) into

, m=0 4.3
611 ‘l‘2}\,1'22 Sy 21+1V1[ SPI ( )

where
o7 = [ 8plw)Y/(w)*do ,
= ¥YMo)*YMo)f (udo ,

and Y]" denotes a spherical harmonic. Because Q is small
we can use the approximation f(u)=[1+5QP,(u)]/4w.
The bifurcation occurs when Eq. (4.3) has a nonzero solu-
tion. We take into account only terms linear in Q and
therefore it is sufficient to consider only the diagonal
components of the matrix appearing in (4.3). This leads
to the following equation for the bifurcation point corre-
sponding to the given / and m:

1+2A

l (1+41-r\/5 /47 Qul (4.4)

where
vt = [do Y/"0)* Y (0)Y) .

We expect that the lowest value of A satisfying Eq. (4.4)
corresponds to /=m =2. Thus the loss of stability
occurs at

16

A=A ~—(1+20). (4.5)
In the absence of external fields, Q =0 and relation (4.5)
gives simply the value of A at which the isotropic phase
becomes unstable with respect to the nematic perturba-
tions proportional to P,. For Q <0, the uniaxial phase
becomes unstable with respect to the nematic (biaxial)
perturbations proportional to Y% at a lower value of A
than in the case of Q =0.

Relation (4.5) can be applied to the present surface
problem to obtain a rough estimate of the bifurcation
point. The wall induces negative Q,,(z) and the thickness
of the surface layer is approximately equal to L (see Fig.
2). Therefore it is reasonable to identify Q as I',,. Then
we superimpose the straight line A.(Q) given by (4.5) on
the plot of I',,(A) (see. Fig. 5). The value of A at which
A.(Q) crosses T',,(A) is the approximate location of the
surface bifurcation point A=A7. We find that A ~3.69,

3401

which corresponds to Q =T",, = —0.192.
To calculate A} rigorously, we linearize Eq. (2.6) and
express it in terms of n,(&,u) as follows:

on (§1,w1)+ A n (§,,u1

X f d§2dw2V(§12,w1,w2)Sne(éz,w2)=0, 4.6)

where n2(£,u) is the uniaxial solution of Eq. (2.12) for the
given Value of A and &n,(§,w) denotes a biaxial perturba-
tion. We seek the smallest value of A at which Eq. (4.6)
has a nontrivial solution. Using (2.8) and (2.11) we trans-
form Eq. (4.6) into

dn"(&q,uy) -Hm (&ppuy)
X
fo du2f0 d&,v

M(&qapthy, Uy )0R(Epuy) =0,

4.7)
where

m _ 1 2T
v (§12»“17u2)—‘2“;f0 d(@— @) V(€1 01,0,)

—im(p,—@,)
Xe R

m — 1 27 —im
Sn; (é’,u)——ﬁfo dodn,(L,w)e ~m? .

Because of the symmetries of the distribution function,
on"(&,u)=0 if m is odd. We could proceed in the same
way as in the case of the nonlinear equation (2.12). How-
ever, in this context it is more convenient to expand the
Dirac 8 function appearing in (2.8), in a series of orthogo-
nal functions defined by (3.1) as follows:

a(tl—t2)=z¢k(tl)¢k(t2) (4.8)
k

Using (2.8), (2.11), and (4.8) we find the following diago-
nal representation of V'™, for |m|=2,4,6,

ViGipuiu)==2 3 Cf P)""(ul)P‘m'( )

1> |m]|

X 2 \Pk(é’,,ul)‘lfk(é’z,uz)
k

where 4.9)

m__! | |m|!
! ’(1+1 H’

and we have used the fact that s; <O for / >2. The substi-
tution of (4.9) into (4.7) gives

dn(G,u)=2AnQgu) 3 (/M2 Y snfrPmu)
k

1>|m]|

1 Etu
Wi(Gu)=— fg ¥y (1)dt

XW¥, (5,u)=0, (4.10)

where

gmax
snr=(C")”? foldu J g Pl W (6 wen (&, u)

and gmax tmax
Equation (4.10) shows that 8n)" can be expressed in

terms of its projections onto functlons P,"”'llf r- Although
these functions are not orthogonal to one another, they
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are linearly independent nevertheless. Finally, we trans-
form (4.10) into a set of linear equations for the projec-
tions &n;} as follows:

> X Ajre(Mdnp. =0, (4.11)
oK
where

A[;?lrk:(7»)=5,k51:k'—Zle'i'pkr(l) ’
mom 1 Smax
Vit W =(CPC'2 [ du [ " dg (g us P|™w)
X P (u)W, (&, u)
X‘I/k:(é',u) )

and |m|<LI'<1,,., 0<k,k'<k,,.. Matrices (4™) are
symmetric and can be diagonalized. The mth bifurcation
point is defined as the solution of equation d]; (A)=0,
where d . (A) denotes the minimal eigenvalue of (A4 ™).
We expect that A] corresponds to m =2. In Fig. 6 we
plot d™-%(A) for the following three sizes of matrix
(A™72): (1) 1 =4, ko =3, 2) 1., =10, k0 =5, and
(3) I =10, k., =15. As expected, the increase in the
matrix size shifts A} to the left. We find, however, that
further enlargement of the matrix does not change A
significantly and it can be estimated at A;~3.55. This
value is well below A;=4.19 at which the bulk transition
to the nematic phase occurs. We also note that our previ-
ous rough estimate of A} is quite close to the value ob-
tained from the rigorous bifurcation analysis. The above
results show that the surface phase transition in which
the uniaxial symmetry of the system is broken does
occur. However, we have not attempted to extend the bi-
furcation analysis to the next order to determine the or-
der of the surface transition.
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FIG. 6. Minimal eigenvalue of the matrix (4™ ~2) vs the
bulk density A for (1) I, =4, kmax =3 (asterisks), (2) /., =10,
kmax =5 (triangles), and (3) /., =10, k., =15 (squares). The
bifurcation point corresponds to d2;,(A)=0.

V. DISCUSSION

We have studied ordering of hard needles close to a
hard and structureless wall. The density of the system is
measured in units of LD which means that the packing
fraction tends to zero when L /D — oo. Despite a vanish-
ingly small packing fraction, the system exhibits the
nematic-isotropic transition. Therefore it is a convenient
model system to study ordering of anisotropic particles
at interfaces, such as the nematic-isotropic or the
nematogen-wall interface. In the latter case, we can fur-
ther distinguish two situations: (1) the bulk phase is iso-
tropic and (2) the bulk phase is nematic. The first situa-
tion is simpler as then the one-particle distribution func-
tion has uniaxial symmetry with respect to the normal to
the wall. However, as we have seen it is true only if the
parameter A is sufficiently below its value at the nematic-
isotropic transition.

It is interesting to compare the density profiles p(z) for
hard needles, obtained in the uniaxial case (see Fig. 1),
with a typical p(z) for hard spheres at a hard wall. The
former are structureless apart from a maximum in a form
of cusp at z=L /2. The cusp results from the restricted
rotational freedom of the particle close to the wall. Also
for systems of finite packing fraction the same effect may
cause a discontinuity in the first derivative of the density
profile. Then, however, the discontinuity may not coin-
cide with the maximum. Apart from the vanishing pack-
ing fraction, the lack of oscillations in p(z) may be caused
by averaging over the orientational degrees of freedom.
We observe that the contact density, p(0"), is equal to
zero for hard needles while for hard spheres it is finite
and related to the pressure by the sum rule. A closer
analogy with hard spheres can be obtained if one consid-
ers the density of the ends, p.({). Then the pressure sum
rule can be expressed as p,(0")=pp. Because we use an
approximate (), it is not obvious that the above condition
is satisfied by solutions of integral equation (2.3). To
prove that it is true, we can use similar argumentation of
that of van Swol and Henderson [18]. They showed that
for a hard-sphere fluid near a wall, the pressure sum rule
is obeyed by any weighted density approximation (WDA)
with a spatially varying weighted density. The Onsager
approximation in the hard-sphere limit belongs formally
to the same class of approximation as WDA. The exten-
sion of the proof to a system of hard anisotropic particles
is straightforward. Therefore, any solution of Eq. (2.3)
should satisfy the pressure sum rule.

We verify our numerical results calculating the devia-
tion from this rule, i.e., A=pe(0+)—Bp. For A<3, Ais
small which means that the numerical solution is con-
sistent with the pressure sum rule. However, for A>3 a
more significant discrepancy occurs. This results from a
limited accuracy of the numerical procedure. We solve a
nonlinear integral equation for a function of two vari-
ables and, in addition, the solution is expected to have
rather unusual features. Note that p,({,w) is very steep
in the neighborhood of the maximum [see Egs. (2.15)].
At the maximum the slope becomes infinite and the
divergence is logarithmic. These features of the distribu-
tion function result from the limiting procedure of mak-
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ing the particles infinitely thin.

The final remark concerns the validity of the Onsager
approximation in the limit L /D — . For a spatially
uniform system, one can examine the reduced virial
coefficients defined as B,(reduced)=B, /B3 ! to verify
the condition B,(reduced)< <1 for L/D— . Only if
this condition is satisfied is the Onsager theory of the
nematic-isotropic transition self-consistent. Frenkel’s
[19] direct numerical calculation of the third through
fifth virial coefficients of hard spherocylinders with L /D
between 1 and 10° shows that B, (reduced), n =3,4,5, are
very small when L /D is very large. This result applies to
the isotropic phase, however. Certainly, the Onsager ap-
proximation breaks down when all spherocylinders are
almost parallel, i.e., close to the nematic—smectic- 4 tran-
sition. Then the contribution of the third-order term of
the virial expansion to the free energy is important and
significantly changes the density at which the
nematic—smectic-4 transition occurs [20]. There is,
however, an important difference between both transi-
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tions. The nematic-isotropic transition occurs at a finite
value of A~B,p, which means zero packing fraction
in the limit L/D-—>o. On the contrary, the
nematic—smectic- 4 transition occurs at a finite packing
fraction, which corresponds to A— o0 when L /D — .
The wall-hard-needle system, studied in this paper,
has zero packing fraction and A is below its value at the
nematic-isotropic transition. For this reason we would
expect the Onsager approximation to work well also in
this case. On the other hand, the reduced dimensionality
near the hard wall may make the approximation less reli-
able. At present we have no definite answer to the ques-
tion about importance of higher-order terms in the virial
expansion and further investigations are necessary.
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